Part Number Hot Search : 
2424D 067492 NB7LQ572 1C101MDD TMS320 IC106D AAT1236 FDMC8622
Product Description
Full Text Search
 

To Download F971D225MBA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SOLID TANTALUM ELECTROLYTIC CAPACITORS
F97
Resin-molded Chip, High Reliability (High temperature / moisture resistance) Series
Specifications
Item Category Temperature Range
Capacitance Tolerance
Performance Characteristics --55 ~ +125C (Rated temperature : 85C.) 20%, 10% (at 120Hz)
Refer to next page Refer to next page
Adapted to the RoHS directive (2002/95/EC).
Dissipation Factor ESR (100kHz)
Leakage Current
* After 1 minute' s application of rated voltage,leakage current at 20C is not more than 0.01CV or 0.5A, whichever is greater. * After 1 minute' s application of rated voltage,leakage current at 85C is not more than 0.1CV or 5A,whichever is greater. * After 1 minute' s application of derated voltage,leakage current at 125C is not more than 0.125CV or 6.3 A,whichever is greater. +15% Max. (at +125C) +10% Max. (at +85C) --10% Max. (at --55C) At 85C, 85% R.H.,For 1000 hours (No voltage applied) Capacitance Change * * * * * * Within 10% of initial value Dissipation Factor * * * * * * * * * * * Initial specified value or less Leakage Current * * * * * * * * * * * * 125% or less of initial specified value After 500 hour' s application of rated voltage in series with a 33 resistor at 60C,90~95% R.H.,capacitors meet the characteristics requirements listed below. Capacitance Change * * * * * * Within 10% of initial value Dissipation Factor * * * * * * * * * * Initial specified value or less Leakage Current * * * * * * * * * * * * 125% or less of initial specified value At --55C / +125C,For 30 minutes each,1000 cycles Capacitance Change * * * * * * Within 5% of initial value Dissipation Factor * * * * * * * * * * * Initial specified value or less Leakage Current * * * * * * * * * * * * * Initial specified value or less At 260C,reflowing capacitors for 10 seconds Max. Capacitance Change * * * * * * Within 5% of initial value Dissipation Factor * * * * * * * * * * * Initial specified value or less Leakage Current * * * * * * * * * * * * * Initial specified value or less After immersing capacitors completely into a solder pot at 245C for 2~3 seconds,more than 3/4 of their electrode area shall remain covered with new solder. After application of surge in series with a 33 resistor at the rate of 30 seconds ON, 30 seconds OFF,for 1000 successive test cycles at 85C,capacitors meet the characteristics requirements listed below. Capacitance Change * * * * * * Within 5% of initial value Dissipation Factor * * * * * * * * * * * Initial specified value or less Leakage Current * * * * * * * * * * * * * Initial specified value or less After 2000 hours' application of rated voltage in series with a 3 resistor at 85C,or derated voltage in series with a 3 resistor at 125C,capacitors meet the characteristic requirements listed below. Capacitance Change * * * * * * Within 10% of initial value Dissipation Factor * * * * * * * * * * * Initial specified value or less Leakage Current * * * * * * * * * * * * * Initial specified value or less After Applying the pressure load of 5N for 10 1 seconds horizontally to the center of capacitor side body which has no electrode and has been 5N (0.51kg * f) soldered beforehand on an aluminum For 10 1 seconds substrate,there shall be found neither exfoliation nor its sign at the terminal electrode. Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of the capacitor, the pressure strength is applied with a 20 specified jig at the center of the R230 substrate so that the substrate may bend by 1mm as illustrated. Then,there shall be found no 45 45 remarkable abnormality on the capacitor terminals.
Capacitance Change by Temperature
Damp Heat
Type numbering system (Example : 16V 3.3 F)
1 2 3 4 5 6 7 8 9 10 1 1
Taping code (Refer to page 267 for details) Case code Capacitance tolerance Rated Capacitance Rated voltage Series
Load Humidity
F97
1C 335 M B
Temperature Cycles
Drawing
A * B Case
L H W1 L H
C * N Case
W1
Resistance to Soldering Heat
Solderability
W2 S S S S
W2
Surge
Dimensions
Case code A B C N 3.2 3.5 6.0 7.3 L 0.2 0.2 0.2 0.2 W1 1.6 2.8 3.2 4.3 0.2 0.2 0.2 0.2 W2 1.2 2.2 2.2 2.4 0.1 0.1 0.1 0.1 1.6 1.9 2.5 2.8 H 0.2 0.2 0.2 0.2 S
(mm)
0.8 0.2 0.8 0.2 1.3 0.2 1.3 0.2
Endurance
Marking
A Case
C105
Month code
B Case
3.3 16r
C Case
10 16r
N Case
47 10r
Shear Test
Rated voltage (Voltage code)
Month code Rated Voltage (V) Rated Capacitance (Capacitance code ) Rated voltage (V) Rated Capacitance (F)
Cap. (F)
V
Code
4 0G
6.3 0J
10 1A
16 1C
20 1D
25 1E A
35 1V A A A B B B C C N
0.33 0.47 0.68 1 1.5 2.2 3.3 4.7 6.8 10 15 22 33 47 68 100 150
334 474 684 105 155 225 335 475 685 106 156 226 336 476 686 107 157 C A A A B B B C C
*
As for the surge and derated voltage at 125C, refer to page 266 for details.
A A A A A A B B B C C C N
*
A A B B B C C C
*
A A B B B C C N N N
A A B B B C C C N
*
A A B B B C C C N
*
N
N
N
N
N
N N
N N
CAT.8100V
1mm
Standard ratings
Terminal Strength
SOLID TANTALUM ELECTROLYTIC CAPACITORS
F97
Standard ratings
Rated Rated Volt Capacitance (F) Case code Part Number Leakage Current (A) Disspation Factor (%@120Hz) ESR (@100kHz) Rated Rated Volt Capacitance (F) Case code Part Number Leakage Current (A) Disspation Factor (%@120Hz) ESR (@100kHz)
4V
6.3V
10V
16V
20V
3.3 4.7 6.8 10 15 22 33 47 68 68 100 150 2.2 3.3 4.7 6.8 10 15 22 33 47 47 68 100 1.5 2.2 3.3 4.7 6.8 10 15 22 33 33 47 1 1.5 2.2 3.3 4.7 6.8 10 15 22 22 33 0.68 1 1.5 2.2 3.3 4.7 6.8 10 15 22
A A A B B B C C C N N N A A A B B B C C C N N N A A A B B B C C C N N A A A B B B C C C N N A A A B B B C C N N
F970G335MAA F970G475MAA F970G685MAA F970G106MBA F970G156MBA F970G226MBA F970G336MCC F970G476MCC F970G686MCC F970G686MNC F970G107MNC F970G157MNC F970J225MAA F970J335MAA F970J475MAA F970J685MBA F970J106MBA F970J156MBA F970J226MCC F970J336MCC F970J476MCC F970J476MNC F970J686MNC F970J107MNC F971A155MAA F971A225MAA F971A335MAA F971A475MBA F971A685MBA F971A106MBA F971A156MCC F971A226MCC F971A336MCC F971A336MNC F971A476MNC F971C105MAA F971C155MAA F971C225MAA F971C335MBA F971C475MBA F971C685MBA F971C106MCC F971C156MCC F971C226MCC F971C226MNC F971C336MNC F971D684MAA F971D105MAA F971D155MAA F971D225MBA F971D335MBA F971D475MBA F971D685MCC F971D106MCC F971D156MNC F971D226MNC
0.5 0.5 0.5 0.5 0.6 0.9 1.3 1.9 2.7 2.7 4.0 6.0 0.5 0.5 0.5 0.5 0.6 0.9 1.4 2.1 3.0 3.0 4.3 6.3 0.5 0.5 0.5 0.5 0.7 1.0 1.5 2.2 3.3 3.3 4.7 0.5 0.5 0.5 0.5 0.8 1.1 1.6 2.4 3.5 3.5 5.3 0.5 0.5 0.5 0.5 0.7 0.9 1.4 2.0 3.0 4.4
6 6 6 6 6 6 6 6 6 6 8 8 6 6 6 6 6 6 6 6 6 6 6 8 4 6 6 6 6 6 6 6 6 6 6 4 4 6 6 6 6 6 6 8 6 6 4 4 6 6 6 6 6 6 6 6
4.5 4.0 3.5 2.1 2.0 1.9 1.1 0.9 0.8 0.6 0.6 0.6 5.0 4.5 4.0 2.5 2.1 2.0 1.1 1.1 0.9 0.7 0.6 0.6 6.0 5.0 4.5 2.8 2.5 2.0 1.2 1.1 1.1 0.7 0.7 7.5 6.3 5.0 3.1 2.8 2.5 1.5 1.2 1.1 0.7 0.7 7.6 7.5 6.7 3.8 3.1 2.8 1.8 1.5 0.7 0.7
25V
35V
0.47 0.68 1 1.5 2.2 3.3 4.7 6.8 10 10 15 0.33 0.47 0.68 1 1.5 2.2 3.3 4.7 6.8 10
A A A B B B C C C N N A A A B B B C C N N
F971E474MAA F971E684MAA F971E105MAA F971E155MBA F971E225MBA F971E335MBA F971E475MCC F971E685MCC F971E106MCC F971E106MNC F971E156MNC F971V334MAA F971V474MAA F971V684MAA F971V105MBA F971V155MBA F971V225MBA F971V335MCC F971V475MCC F971V685MNC F971V106MNC
0.5 0.5 0.5 0.5 0.6 0.8 1.2 1.7 2.5 2.5 3.8 0.5 0.5 0.5 0.5 0.5 0.8 1.2 1.6 2.4 3.5
4 4 4 4 6 6 6 6 6 6 6 4 4 4 4 6 6 6 6 6 6
10.0 7.6 7.5 4.0 3.8 3.5 1.8 1.8 1.6 1.0 0.7 12.0 10.0 7.6 4.0 4.0 3.8 2.0 1.8 1.0 1.0
CAT.8100V


▲Up To Search▲   

 
Price & Availability of F971D225MBA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X